目录 Contents

 第十五章 极限旋转场使扭量光影泡沫成为磁性流体

 Chapter 15 The limit-rotation field makes twistor-light-silhouette foam magnetic fluid

         Needham 的书《复分析:可视化方法》  § 3.5.5 让我们可视化地看到了在黎曼球面上的抛物型莫比乌斯变换.

Section 3. V. 5 of Needham's book Visual Complex Analysis lets us visualize the parabolic type of Möbius transformation on the Riemann sphere.

 

         Needham 在他的著作《复分析:可视化方法》的 § 3.5.5中讨论了抛物型莫比乌斯变换.根据这本书的第272页(§ 6.3.7),这种类型的运动只有双曲几何才会有,称为极限旋转.         (8.4.4.1-1)
 
In § 3.5.5 of his book Visual Complex Analysis, Needham discussed the parabolic type of Möbius transformation on the Riemann sphere. According to § 6.3.7 of the book, this kind of motion is peculiar to hyperbolic geometry, called a limit rotation.         (8.4.4.1-1)

         扎比内·霍森费尔德在她的书《迷失》中写道:

         为了解释现有的宇宙学数据,我们必须假设宇宙中包含两种新的、迄今仍无法解释的成分.其一是暗能量.另外一种成分通常归因于粒子暗物质,可以一起描述为流体.不过,像这样的额外流体引起的效应,也可以是因引力对普通物质的反应并不像我们的方程所预测的那样而引起的.(《迷失》第277.)

In her book Lost in Math: How Beauty Leads Physics Astray, Sabine Hossenfelder wrote:

To explain the existing cosmological data, we have to assume the universe contains two new, heretofore unexplained components. One of them is dark energy. The other component is usually attributed to particle dark matter, collectively described as a fluid. However, an effect just like this extra fluid could also come about because gravity's response to ordinary matter isn't what our equations predict. (Lost in Math: How Beauty Leads Physics Astray, p. 207.)

         Needham指出,

         复平面上 C 的每一莫比乌斯变换都生成唯一的洛伦兹时空变换.

(见特里斯坦·尼达姆(Tristan Needham)的书《可视化微分几何和形式:一部五幕数学正剧》第88页.)

Needham pointed out:

Every Möbius transformation of the complex plane yields a unique Lorentz transformation of spacetime. (See Tristan Needham's book Visual Differential Geometry and Forms: A mathematical drama in five acts. p. 77.)

欧几里得空间 ↔ 莫比乌斯变换 ↔ 闵可夫斯基空间      (15-1)
 
Euclidean space Möbius transformation Minkowski spacetime      (15-1)

15.1 极限旋转类光测地线和偶极子向量场

15.1 Limit-rotation null geodesics and the dipole field

由(8.4.4.5-8)可以知道,在莫比乌斯环型反引力场中,一方面,复平面上的运动诱导出黎曼球面泡上的运动,另一方面,黎曼球面泡上的运动诱导出复平面上的运动.      (15.1-1)
 
From (8.4.4.5-8) one can know that in a Möbius-loop-typed antigravitational field, on the one hand, motion in the complex plane induces motion on the Riemann-sphere-bubble, and on the other hand, motion on the Riemann-sphere-bubble induces motion in the complex plane.      (15.1-1)

         R. Penrose 与 W. Rindler [1984, § 1.3, 图1-9 S+上的类光旋转效应, 及其下面三段][彭1]指出,

在复数平面中的刚性平移运动投影到黎曼球面上的变换使得点在黎曼球面上沿着过北极并与 y 方向相切的圆周位移.这种类光旋转留置一个给定的零模方向不变.      (15.1-2)

Penrose, R. and Rindler [1984, § 1.3, "Fig. 1-9. The effect of a null rotation on S+", and the following three paragraphs][彭1] pointed out that

The rigid translation of the Argand plane projects to a transformation on the Riemann sphere for which the points are displaced along circles through the north pole tangent to the y-direction there. The null rotations leave one given null direction invariant.      (15.1-2)
 

         因为在复平面上不变曲线就是平行于平移方向的直线族,所以黎曼球面上的不变曲线是在无穷远处有公共切线的圆周族,这条公共切线平行于复平面中的不变直线.(《复分析:可视化方法》§ 3.5.5)

Since the invariant curves in the complex plane are the family of parallel lines in the direction of the translation, the invariant curves on the Riemann sphere are the family of circles whose common tangent at infinity is parallel to the invariant lines in the complex plane. (Visual Complex Analysis, § 3.5.5.)

         如图 6-5d 所示,洛伦兹变换的最后一种类型叫作类光旋转,这时两个不动点在北极重合了.很难对这个时空变换给出生动的物理描述,对应的 莫比乌斯变换称为抛物型,它是复平面 C 上的平移: M(z) = z + τ ,也就是每一个复数都沿着平行于 τ 的直线运动. ... 所有这些直线都被球极平面投影为经过北极的圆周.它们在北极的切线都平行于 τ ,所以就有图6-5d这样的形式.注意,当越来越接近北极时,球面上的运动会越来越小,直到北极,使其成为仅有的不动点.(见特里斯坦·尼达姆(Tristan Needham)的书《可视化微分几何和形式:一部五幕数学正剧》第90页.)

The last type of Lorentz transformation is shown in [6.5d]. It is called a null rotation and both of its fixed points are coincident at the north pole. While it is hard to give a vivid physical description of this spacetime transformation, the corresponding Möbius transformation is called parabolic and is a simple translation of C: M(z) = z + τ . This moves every complex number along a line parallel to τ. But ... these lines all stereographically project to circles through the north pole with a common tangent there that is parallel to τ, thereby explaining the form of [6.5d]. Note that movements on the sphere become smaller and smaller as the north pole is approached, leaving this as the only fixed point. (See Tristan Needham's book Visual Differential Geometry and Forms: A mathematical drama in five acts. p. 79.)

         极限旋转场的奇点称为偶极子,因为一条很短的磁铁两极之间的磁力线就是这样的.(见特里斯坦·尼达姆(Tristan Needham)的书《可视化微分几何和形式:一部五幕数学正剧》第229页.)

The singular point of a limit-rotation field is called a dipole, for this is the way the magnetic field lines stream between the two poles of a short bar magnet. (See Tristan Needham's book Visual Differential Geometry and Forms: A mathematical drama in five acts. p. 196.)

         偶极子的流线是圆形的.(《可视化微分几何和形式:一部五幕数学正剧》第265页.)

Dipole streamlines are circular. (Visual Differential Geometry and Forms: A mathematical drama in five acts. p. 227.)

         我们的一般的作法则是把障碍物外任意点处放上一个偶极子,从而把这个点映到了 ¥ .(《复分析:可视化方法》第483页.)

The general construction allows us to map any point outside the obstacle to ¥ by placing a dipole there. (Visual Complex Analysis, p. 620.)

 

如果以反引力场发动机正在运动的方向作为前方,则前方方向是(15.1-2)中所述的 y 方向,而"北极"则位于反引力场发动机的轮子所在的位置.极限旋转是一种惯性系拖曳效应,并且根据等效原理,极限旋转导致万有引力的分量和极限旋转类光测地线.         (15.1-3)

 
If the direction in which an antigravitation engine is moving is regarded as the front, then the front direction is the y-direction stated in (15.1-2), while the "north pole" is located where the wheel of the antigravitation engine is. The limit rotation is an inertial-frame-dragging effect, and, according to the equivalence principle, causes both a component of gravitation and limit-rotation null geodesics.               (15.1-3)

 

1. 在复数平面中的刚性平移运动投影到黎曼球面上的变换使得点在黎曼球面上沿着过北极并与 y 方向相切的圆周位移.这种类光旋转留置一个给定的零模方向不变.

 

2. y 轴的方向是惯性系拖曳的方向:在 y 轴的正方向,空间膨胀,在 y 轴的负方向,空间收缩.

 

3. 黎曼球面泡上的抛物型莫比乌斯变换和(15.1-2)描述极限旋转类光测地线,这些测地线看起来像很小的条形磁铁的磁感线.莫比乌斯环型反引力场发动机的平移产生极限旋转场和极限旋转力.平移运动中的反引力场发动机在黎曼球面泡上相当于一个通电螺线管,因而具有黎曼球面泡电磁场.

4. 极限旋转场是偶极子向量场,在适当条件下具有偶极辐射机制,发出极限旋转光.极限旋转光属于扭量光.

5. 极限旋转场导致宇宙的大尺度结构,有助于解释星际磁场的起源.

                                                                                                                                                                 (15.1-4)

 

1. The rigid translation of the Argand plane projects to a transformation on the Riemann sphere for which the points are displaced along circles through the north pole tangent to the y-direction there. The null rotations leave one given null direction invariant.

 

2. The y-direction is the direction of the inertial-frame-dragging effect: in the positive direction of the y-axis, the space expands; in the negative direction of the y-axis, the space contracts.

 

3. The parabolic Möbius transformation on the Riemann-sphere-bubble and (15.1-2) describe the limit-rotation null geodesics, which look like the magnetic induction lines of a tiny bar magnet. The translational motion of the Möbius-loop-typed antigravitation engine generates the limit-rotation field and the limit-rotation force. An antigravitation engine in translational motion is equivalent to a solenoid that carries current on a Riemann-sphere-bubble, and hence has Riemann-sphere-bubble electromagnetic fields.

4. The limit-rotation field is a dipole field, and, under appropriate conditions, has the dipole radiation mechanism, emitting limit-rotation light. Limit-rotation light belongs to twistor light.

5. Limit-rotation fields cause the large-scale structure of the universe, and helps to explain the origin of the interstellar magnetic fields.

                                                                                                                                                   (15.1-4)

 

         关于扭量光,见(8.4.4.2-4).

For twistor light, see (8.4.4.2-4).

 

《数学指南-实用数学手册》在"3.6 微分几何"一节中指出,

基本关系"力 = 曲率"是在数学和物理中最深刻的已知联系.

                                                                 (8.4.4.5-2)

 

In the section of "3.6 Differential geometry", Oxford Users' Guide to Mathematics points out that

The basic relation "force = curvature" is the deepest known connection between mathematics and physics.

                                                                                                                (8.4.4.5-2)

 

         为了方便阅读,在此将(8.3.3-2)重现如下:

 

曲率是相邻测地线之间的作用力.如果两条相邻的测地线轨迹穿过一个正曲率的区域,它们就会相互吸引.另外,穿过一个负曲率区域的两条相邻测地线轨迹会相互排斥,并加速分离.在这两种情况下,吸引力和排斥力都是与两条测地线的间隔成比例的,而且这个(局部的)比例"常数"等于曲面在质点所在位置的曲率! 这就是雅克比的发现的本质.测地线偏移方程(即雅克比方程)还有一个完全不一样的名字,称为谐振子方程,在物理学(经典领域和量子领域)中无处不在.由牛顿第二运动定律得到的运动方程与雅克比方程完全相同,只是用弹簧的弹性系数代替了曲面的曲率.砝码以正弦曲线上下振动.

(见特里斯坦·尼达姆(Tristan Needham)的书《可视化微分几何和形式:一部五幕数学正剧》第310、312、313页.)

 

                                                                                                 (8.3.3-2)

 

(8.3.3-2) is repeated here, for the convenience of the reader:

 

Curvature is a force between neighbouring geodesics. If two neighbouring geodesics pass through a region of positive curvature, they are attracted to each other. On the other hand, neighbouring geodesics travelling through a region of negative curvature are repelled by each other, accelerating apart. In both cases, the force of attraction or repulsion is directly proportional to the separation of the geodesics, and (locally) the proportionality "constant" is equal to the curvature of the surface at the location of the particle! This is essence of Jacobi's discovery. This Equation of Geodesic Deviation also goes by a quite different nameit is the equation of the harmonic oscillator, which is ubiquitous in physics, in both the classical and quantum realms. Newton's Second Law of Motion now yields exactly the same equation of motion as Jacobi's Equation, but with the surface's curvature replaced by the spring's stiffness. The weight oscillates up and down, sinusoidally.

(See Tristan Needham's book Visual Differential Geometry and Forms: A mathematical drama in five acts. pp. 269, 271, 272.)

 

2. The Weyl curvature deforms a sphere into an egg of equal volume.

(Refer to Visual Differential Geometry and Forms: A mathematical drama in five acts. pp. 309, 314, 319.)

 

3. Möbius-loop-typed antigravitation deforms a Riemann sphere into an egg.

                                                                                                               (8.3.3-2)

         实验显示出,极限旋转场的施力对象不仅有电导体,而且有绝缘体,例如漂在反引力小船近处的水上的牙签.

Experiments show that the limit-rotation field exerts force not only on electric conductors, but also on insulators, e.g. a toothpick floating on the water near the antigravitational boat.

         由于极限旋转场,有些特异功能人能吸引小的塑料制品.

Because of the limit-rotation fields, some people with paranormal abilities can attract small plastic products.

         赫尔曼·外尔指出:

         力学的基本规律是一种空白的形式,只有当它所包含的力的概念被物理学所填满时,它才能获得具体的内容.(《空间-时间-物质》第53页.)

Hermann Weyl pointed out:

The fundamental law of mechanics is a blank form which acquires a concrete content only when the conception of force occurring in it is filled in by physics. (Space-Time-Matter, pp. 66~67.)

 

1. 黎曼球面泡上的极限旋转力是导致大地震的一个因素..

2. 另请参看(8.4.4.5-8)、(12.1-3)、(13-14)、(15.4(1)-1).

                                                                     (15.1-5)

 
1. Limit-rotation force is a factor in causing large earthquakes.

2. See also (8.4.4.5-8), (12.1-3), (13-14), and (15.4(1)-1).

                                                                 (15.1-5)

15.2 精细结构常数是黎曼球面泡的射影拓扑不变量

15.2 The fine-structure constant is a projective topological invariant of the Riemann-sphere-bubble

         惠勒提出了两个概念:"没有质量的质量"(即能够自己约束自己的纯能量)、"没有电荷的电荷".(《约翰惠勒自传:京子、黑洞和量子泡沫》.第228页)

Wheeler proposed two ideas: "mass without mass" (i.e. pure energy holding itself together) and "charge without charge". (Geons, Black Holes, and Quantum Foam: A Life in Physics. p. 239.)

        

根据(8.4.2-3),一个点电荷在射影扭量空间 PN 里变成一个黎曼球面泡电荷.黎曼球面泡电荷产生极限旋转磁和黎曼球面泡电磁波.

 

According to (8.4.2-3), a point electric charge becomes a Riemann-sphere-bubble electric charge in the projective twistor space PN. Riemann-sphere-bubble electric charges generate limit-rotation magnetism and Riemann-sphere-bubble electromagnetic waves.

 

         精细结构常数是α = e2 / ( 2 ε0 h c ).根据相对性原理,惯性系被反引力场拖曳的物质的精细结构常数不变.基于(8.5-6),平移运动中的黎曼球面泡带有黎曼球面泡基本电荷[1].鉴于对应原理,下面的方程成立(在这种情况下,"a反引力 ≠ 0"意味着"黎曼球面泡里"):

e2 / ( 2 ε0 h c ) = e' 2 / ( 2 ε0 h' c ),      (黎曼球面泡里,并且e 0);      (15.2-1)

式中e'是惯性系被反引力场拖曳的物质的黎曼球面泡基本电荷,e是基本电荷, h' 是黎曼球面泡作用量, h是普朗克作用量.

e' 2 ∝ h' .      (15.2-2)

The fine-structure constant is α = e2 / ( 2 ε0 h c ). According to the principle of relativity, the fine-structure constant of the matter whose inertial frame is being dragged by the antigravitational field remains the same. Based on (8.5-6), a Riemann-sphere-bubble in translational motion has the Riemann-sphere-bubble elementary electric charge. In view of the correspondence principle, the following equation holds (in this case "aantigravitational ≠ 0" means "in the Riemann-sphere-bubble"):

e2 / ( 2 ε0 h c ) = e' 2 / ( 2 ε0 h' c ),      (in the Riemann-sphere-bubble, and e 0);      (15.2-1)

where e' is the Riemann-sphere-bubble elementary electric charge of the matter of which the inertial frame is being dragged by antigravitation, e is the elementary electric charge, h' is the Riemann-sphere-bubble quantum of action, and h is Planck's quantum of action.

e' 2 ∝ h' .      (15.2-2)

彭罗斯指出:

         在外尔框架下,对于时间或空间的测量没有绝对的计量标准,度规只能给到一个比例系数.(《通向实在之路》第326页.)

         有一项巧妙的改变将外尔那聪明、富有原创精神而且确实极好的观点转变为了现代物理的核心要素;这项改变就是把外尔的正实数的比例系数,也就是计量标准,改换成量子力学的复数相位.(《新物理狂想曲》第070页).

         更精确地讲,在外尔理论中出现的相位和量子理论的相位之间有一个由粒子的电荷给出的乘数.(《新物理狂想曲》第070页).

 

参看(11.2(3)-9).

 

Penrose pointed out:

There is no absolute scaling for time or space measures, in Weyl's scheme, so the metric is given only up to proportionality. (The Road to Reality. p. 451.)

 

The subtle change that converts Weyl's ingenious but extraordinary idea into a key ingredient of modern physics is to replace Weyl's real positive scale factor - or gauge - into the complex phase of quantum mechanics. (Fashion, Faith, and Fantasy in the New Physics of the Universe. p. 57.)

 

To be more precise, there is a multiplying factor between the phase that appears in Weyl's theory and the phase of the quantum formalism. (Fashion, Faith, and Fantasy in the New Physics of the Universe. p. 57.)

 

See (11.2(3)-9).

         基于(15.2-2),可以推断出下面的方程成立:

| Q' / Q | = ( h' / h )(1/2) ,         (黎曼球面泡里,并且Q 0).      (15.2-3)

Based on (15.2-2), one can infer that the following equation holds:

| Q' / Q | = ( h' / h )(1/2) ,         (in the Riemann-sphere-bubble, and Q 0).      (15.2-3)

         (15.2-3) §1.5.1(1) 以及(25(2)-3)是一致的.

(15.2-3) is consistent with §1.5.1(1) and (25(2)-3).

         基于(15.2-3)(8.4.2-8)可以假设

Q' = n | Q | ( h' / h )(1/2)     (引物团里,并且Q 0),      n = +1, 0, -1;

对于右手螺旋的扭量光影而言, n = +1;空间膨胀;

对于零螺旋度的扭量光影而言, n = 0;空间既不膨胀也不收缩;

对于左手螺旋的扭量光影而言, n = -1;空间收缩;

对于在左手螺旋和右手螺旋之间振荡的扭量光影而言, n0;投影是电磁场,空间振荡.

如果 a反引力 = 0 ,则 n = 0.

                                                                                                                         (15.2-4)

Based on (15.2-3) and (8.4.2-8), one can assume that

Q' = n | Q | ( h' / h )(1/2)      (in the GFM ball, and Q 0),      n = +1, 0, -1;

in the case of the right-handed-helix twistor-light-silhouette, n = +1, and the space expands;

in the case of the twistor-light-silhouette of zero helicity, n = 0, and the space neither expands nor contracts;

in the case of the left-handed-helix twistor-light-silhouette, n = -1, and the space contracts;

in the case of the twistor-light-silhouette that oscillates between a right-handed-helix and a left-handed-helix, n 0, the projection is electromagnetic fields, and the space oscillates.

If aantigravitational = 0, then n = 0.

                                                                                                                                                                  (15.2-4)

         (15.2-4)可以称为黎曼球面泡电荷方程.(参看本网站第7章第7.11节.)

(15.2-4) can be called the equation of the Riemann-sphere-bubble electric charge. (Refer to Chapter 7, Section 7.11 of this website.)

         由(15.2-3),下列方程成立:

From (15.2-3), the following equations hold:

E'电场 = n E电场 ( h' / h )(1/2)      (黎曼球面泡里,并且Q 0),      n = -1, 0, 1,      (15.2-5)

式中 E电场 是电场, E'电场 黎曼球面泡电场.

E'EF = n EEF ( h' / h )(1/2)      (in the Riemann-sphere-bubble, and Q 0),      n = -1, 0, 1,      (15.2-5)

where EEF is the electric field, and E'EF is the Riemann-sphere-bubble electric field.

         在电学里有下面的方程

E = F / Q .      (15.2-6)

In electricity there is the following equation

E = F / Q .      (15.2-6)

         由(15.2-6)(15.2-4)可以知道

|| F' || = || F || ( h' / h )(1/2) ,      (黎曼球面泡里),      (15.2-7)

式中 || F || 是在闵可夫斯基空间里的力的量值(即大小), || F' || 是在黎曼球面泡上的极限旋转力的量值(即大小).

From (15.2-6) and (15.2-4), one can know that

|| F' || = || F || ( h' / h )(1/2) ,      (in the Riemann-sphere-bubble),      (15.2-7)

where || F || is the magnitude of the force in Minkowski space, and || F' || is the magnitude of the PN-limit-rotation force on the Riemann-sphere-bubble.

         由(15.2-5)可以知道

I' = n I ( h' / h )(1/2)      (黎曼球面泡里,并且Q 0);      (15.2-8)

II' 存在 = I + I '      (黎曼球面泡里,并且Q 0);      (15.2-9)

II' 存在 / I = 1 + n | ( h' / h )(1/2) |      (黎曼球面泡里,并且Q 0);      (15.2-10)

式中I' 是扭量光影电流, I是无反引力时的电流, II' 存在I' 存在时的总电流.

From (15.2-5) one can know that

I' = n I | ( h' / h )(1/2) |      (in the Riemann-sphere-bubble, and Q 0);      (15.2-8)

II' exists = I + I'      (in the Riemann-sphere-bubble, and Q 0);      (15.2-9)

II' exists / I  = 1 + n | ( h' / h )(1/2) |      (in the Riemann-sphere-bubble, and Q 0);      (15.2-10)

where I' is the twistor-light-silhouette electric current, I is the electric current when antigravitation does not exist, and II' exists is the total electric current when I' exists.

由于扭量光影的参与,导体本身的性质和几何形状都改变了,因而导体本身的电阻也改变了.因为U / I = R,所以当电压不变时,下面的方程成立:

RI' 存在 / R = I / II' 存在      (当电压不变时,并且Q 0);

式中R是原来的电阻,RI' 存在是当扭量光影电流存在时的电阻.

                                                                                                                                                                (15.2-11)

 

Due to the involvement of the twistor-light-silhouette, both the properties and the geometric shape of the conductor itself have changed, and hence the electric resistance of the conductor itself have changed. Since U / I = R, when the voltage is constant, the following equation holds:

RI' exists / R = I / II' exists      (when the voltage is constant, and Q 0);

where R is the original resistance, and RI' exists is the resistance when the twistor-light-silhouette electric current exists.

                                                                                                                                                                                 (15.2-11)

所以由(15.2-10)有方程

RI' 存在 / R = 1 / ( 1 + n ( h' / h )(1/2) )      (当电压不变时,并且Q 0).      (15.2-12)

Hence from (15.2-10), there is the equation

RI' exists / R = 1 / (1 + n ( h' / h )(1/2) )      (when the voltage is constant, and Q 0).      (15.2-12)

         当内电阻r不变时,电池内部消耗的功率是P = U I,所以由(6.1.1--7),下面的方程成立:

P耗, I' 存在 / P = II' 存在 / I      (VM-PN气球里),      (15.2-13)

式中PI' 存在是当反引力电流存在时的电功率,P是当反引力电流不存在时的电功率.

When the internal resistance is constant, the power loss in the battery is Ploss = U I. Hence from (6.1.1--7), the following equation holds:

Ploss, I' exists / Ploss = II' exists / I      (in the VM-PN balloon),      (15.2-13);

where PI' exists is the electric power when the antigravitational electric current exists, and P is the electric power when the antigravitational electric current does not exist.

        在(15.2-10)中,当 n = +1 时,电流增大,耗电量增加,因此温度很快增高.

When n = +1 in (15.2-10), the electric current and the power consumption increase, and hence the temperature rises quickly.

        在(15.2-10)中,当 n = -1 时,电流减小;(15.2-10)和(15.2-11)有助于解释为什么李庆恒 练的电气功改变了人体的电阻.

When n = -1 in (15.2-10), the electric current decreases; (15.2-10) and (15.2-11) help to explain why LI Qingheng's Electric Qigong Practice changed a person's electric resistance.

         在反引力场发动机实验中,由于圆形铝制澡盆里的水被电解,在盆壁上可以看到很多小碱块.

In the antigravitational experiments, because the water in the round aluminum wash tub is in electrolysis, a lot of alkaline spots can be seen on the wall of the wash tub.

         基于关系式 W = U I t , W I 都不变时,有关系式

UI' 存在 / U = t / tTLSV ,      (在黎曼球面泡里,并且Q 0, n2 = 1, W I 都不变时);      (15.2-14)

Based on the relation W = U I t , one can know that when both W and I are constant, there is the relation

UI' exists / U = t / tTLSV ,      (in the Riemann-sphere-bubble, Q 0, n2 = 1, and when both W and I are constant);      (15.2-14)

         关于极限旋转场实验,见本网站第7章的7.20节以及本章的问题15.3(1).

For PN-limit-rotation field experiment, see Chapter 7, Section 7.20 of this website and see Problem 15.3(1) in this chapter.

         由于(8.4.4.3-4), UFO 发出的光具有很大的不确定性.

Because of (8.4.4.3-4), the light emitted by UFOs has great uncertainty.

 

参考文献

References

罗杰·彭罗斯.《通向实在之路——宇宙法则的完全指南》.王文浩 译.长沙:湖南科学技术出版社.2013年11月.

Roger Penrose. The Road to Reality: A Complete Guide to the Laws of the Universe. Copyright 2004. First Vintage Books edition, January 2007.

罗杰·彭罗斯. 新物理狂想曲.李泳 译.长沙:湖南科学技术出版社.2021年2月.

Fashion, Faith, and Fantasy in the New Physics of the Universe. Princeton University Press. 2016.

15.3 基于能量转化和守恒定律可以计算出极限旋转力

15.3 Based on the law of conversion and conservation of energy, the limit-rotation force can be worked out

基于能量转化和守恒定律可以计算出极限旋转力.      (15.3-1)
 
Based on the the law of conversion and conservation of energy, the limit-rotation force can be calculated.  (15.3-1)

         由毕奥-萨伐尔定律,一个电荷产生的磁场是

B = ( μ0 / ( 4 π ) ) ( ( q v × r0 ) / r2 ) .      (15.3-2)

From the Biot-Savart law, a magnetic field generated by an electric charge is

B = ( μ0 / ( 4 π ) ) ( ( q v × r0 ) / r2 ) .      (15.3-2)

         根据能量转化和守恒定律, || q || 通过反引力场发动机所产生的黎曼球面泡电磁力 || F' || 施力于罗盘指针;黎曼球面泡电磁力线由(15.1-2)描述.

according to the law of conversion and conservation of energy, || q ||, via the Riemann-sphere-bubble electromagnetic force || F' || generated by the antigravitation engine, exerts force on the compass needles; the Riemann-sphere-bubble electromagnetic force lines are described by (15.1-2).

         由(15.2-4)(15.2-7)(15.3-2)可以知道

( | e' | / | e | ) = ( | F' | / | F | ) = ( | B' | / | B | ) = ( h' / h )(1/2) ,      (黎曼球面泡里,并且Q 0),      (15.3-3)

式中 B 闵可夫斯基空间的磁感应强度, B'是在黎曼球面泡的磁感应强度;鉴于(8.3-1), B' 的方向位于 a反引力 的方向和 B 的方向之间; | B' | B' 的量值.

From (15.2-4), (15.2-7), and (15.3-2), one can know that

( | e' | / | e | ) = ( | F' | / | F | ) = ( | B' | / | B | ) = ( h' / h )(1/2) ,      (in the Riemann-sphere-bubble, and Q 0),      (15.3-3)

where B is the magnetic induction in Minkowski space, B' is the magnetic induction of the Riemann-sphere-bubble; in view of (8.3-1), the direction of B' is between the direction of aantigravitational and the direction of B ; and | B' | is the magnitude of B' .

黎曼球面泡上的极限旋转产生极限旋转磁场.这有助于解释星际磁场的起源.      (15.3-4)
 
The limit-rotation on the Riemann-sphere-bubble generates the limit-rotation magnetic field. This helps to explain the origin of the interstellar magnetic fields.       (15.3-4)

         基于实验可以知道,

承载着反引力场发动机和罗盘的浮板位于一个黎曼球面泡里时,根据能量转化和守恒定律, || B'  || 通过反引力场发动机所产生的极限旋转力 || F' || 施力于罗盘指针;极限旋转力线由(15.1-2)描述.|| B' || 的正负号与B 的正负号无关.无论罗盘指针的一端是哪个磁极,在 a反引力 的正方向, PN 极限旋转场膨胀;在 a反引力 的负方向, PN 极限旋转场收缩.      (15.3-5)

Based on experiments one can know that

When a float board carrying an antigravitation engine and a compass is situated in a Riemann-sphere-bubble, according to the law of conversion and conservation of energy, || B'  ||, via the PN-limit-rotation force || F' || generated by the antigravitation engine, exerts force on the compass needles; the PN-limit-rotation force lines are described by (15.1-2). The sign of B' is independent of the sign of B. no matter which magnetic pole an end of the compass needle is, in the positive direction of aantigravitational, the PN-limit-rotation field expands; in the negative direction of aantigravitational, the PN-limit-rotation field contracts.       (15.3-5)

         PN极限旋转场使得数个黎曼球面泡倾向于排成一条线.

The PN-limit-rotation field makes Riemann-sphere-bubbles tend to be aligned.

         根据量子力学中的费曼路径积分的观点,黎曼球面泡量子有平动速率,但是量子的不确定性给精确地测量反引力场发动机当反引力不为零时的平动速率造成了困难.反引力现象的弛豫时间较长(问题15.3(1) 极限旋转场实验).因此可以通过在极限旋转场实验中测量罗盘指针的偏转角度来测量反引力场发动机的平动速率.

According to the idea of Feynman path integrals in quantum mechanics, a Riemann-sphere-bubble has its translational speed, but the quantum uncertainty causes difficulty in precisely measuring the translational speed of the antigravitation engine when antigravitation is not zero. The relaxation time of antigravitational phenomena is comparatively long (see Problem 15.3(1) PN-limit-rotation field experiment). Hence by measuring the deflection angle of the compass needle in the PN-limit-rotation field experiment, one can measure the translational speed of the antigravitation engine.

         由(15.2-5)和(15.3-3)可以得到,

| ΔE'电场 | | ΔB' | = | ΔE电场 | | ΔB | ( h' / h )      (a反引力 0);      (15.3-6)

式中 E电场 是电场强度, E电场' 是黎曼球面泡电场强度.

From (15.2-5) and (15.3-3), one can obtain

| ΔEEF' | | ΔB' | = | ΔEEF | | ΔB | ( h' / h )      (aantigravitational 0);      (15.3-6)

where EEF is the electric field strength, and EEF' is the electric field strength of the Riemann-sphere-bubble.

因此在反引力场里,局部黎曼球面泡电磁场的起伏可以很大;并且存在着反引力压缩光.

Hence in an antigravitational field, the fluctuations in local Riemann-sphere-bubble electromagnetic fields can be very large; and there exists antigravitational squeezed light.

         由于(15.2-5)和(15.3-3),

黎曼球面泡具有很大的电磁场不确定性,并且产生电磁波和反引力光.

                                                                 (15.3-7)

Because of (15.2-5) and (15.3-3),

The Riemann-sphere-bubble has large uncertainty in the electromagnetic field, and generates electromagnetic waves and antigravitational light.

                                                                                                 (15.3-7)

         极限旋转场有助于解释太极拳大师的力和电.

The limit-rotation field helps to explain the force and electricity of masters of Tai Chi.

         磁性流体的二阶浮力原理和一阶浮力原理有助于解释特异功能人在水面上行走、飞升 、控制水的运动、意念致动以及特异击打和抗击打能力.磁性流体的雕塑有助于解释特异功能人将水造型的能力.磁性流体里的磁热对流效应有助于解释特异功能人的辟火能力.关于特异烧灼现象,见问题7(2).

The principles of the first-order magnetic buoyancy and the second-order magnetic buoyancy for magnetic fluid help to explain human paranormally walking on water, levitation, hydrokinesis, psychokinesis, paranormal striking and paranormal shielding. The magnetic fluid moulding helps to explain human paranormal water moulding. Thermomagnetic convection in magnetic fluid helps to explain human paranormally warding off fire. For pyrokinesis, please see Problem 7(2).

         李德才在他的著作《磁性液体:神奇而有趣的材料》[1]第84页指出:

因为磁性液体在有无磁场下的透光性存在巨大差异,因此我们可以通过磁场来控制磁性液体的折射率.

On page 84 of his book Magnetic liquid: A Magical and Interesting Material[1], LI Decai pointed out:

Because there is a huge difference in the transparency of magnetic liquid between the presence and absence of a magnetic field, we can control the refractive index of magnetic liquid through the magnetic field.

极限旋转场使扭量光影泡沫成为磁性流体,这导致扭量光影泡沫的折射率的变化.         (15.3-8)
 
The limit-rotation field makes twistor-light-silhouette foam magnetic fluid, which causes the change in the refractive index.         (15.3-8)

         更多的信息请参看本网站的第7章第7.20节.

For more information, see Chapter 7, Section 7.20 of this website.

问题15(1) 反引力磁学实验

Problem 15(1) Antigravitational magnetic experiment

         在 本网站的第7章第7.20节所述的反引力场磁学实验中,在第一步和第二步,"小船"的船头放置一个罗盘(在乐扣乐扣塑料保鲜盒的外面,在保鲜盒里面的反引力场发动机自转体的前面.)请点击这里看照片.

         使自转体(是一个金属小轮)转动.金属小轮的质量是m = 3.15 × 10-3 kg.船头指向东南.当小船因反引力而向前运动时,大约2分钟以后观察到罗盘指针的南极向西偏转了大约2°.

In Step 1 and Step 2 of the antigravitational magnetic experiment described in Chapter 7, Section 7.20 on this website, a compass was placed at the head of a small "boat", outside a LocknLock food storage container, and in front of the rotating body of an antigravitation engine which was inside the food storage container. Please click here to view the picture.

The rotating body, which was a small metal wheel, was made to rotate. The metal wheel had a mass m = 3.15 × 10-3 kg. The head of the boat pointed southeast. When the boat moved forwards because of antigravitation, after about 2 minutes it was observed that the south pole of the compass needle deflected westwards by about 2°.

         由于"小船"周围的水波导致的|a' |,根据(8.3.2-3),反引力场发动机产生的反引力频繁地变为零.假定当反引力不为零时,小船相对于地面的平均速率是v = 1 × 10-3 m/s. (空的乐扣乐扣塑料保鲜盒比问题12.2(1) 提到的带有塑料盖的空的玻璃罐头瓶轻.)

Because of the |a' | brought by the water waves around the small "boat", according to (8.3.2-3), antigravitation produced by the antigravitation engine became zero frequently. Assume that when the antigravitation was not zero, the average speed of the boat with respect to the ground was v = 1×10-3 m/s. (An empty LocknLock food storage container is not as heavy as an empty glass jar, for the canned fruit, with a plastic cap on it, mentioned in Problem 12.2(1).

         地球是圆的.在北京地区,罗盘指针所指的地球磁感线方向可以视为地球表面平行.命北京地区地磁场的水平分量是 Bx .在实验中, B' 与 Bx 之间的夹角是 β = /4 .假设罗盘指针的南极向西偏转了φ. φ.

The Earth is round. A compass points in the direction of the Earth's magnetic field line, which, in Beijing area,  can be treated as parallel to the Earth's surface. Let the horizontal component of the geomagnetic field in Beijing area be Bx . In the experiment, the angle that B' made with Bx was β = /4. Suppose that the south pole of the compass needle deflected westwards by an angle of φ. Find φ.

         解.  将以上数据代入当 n = 1 时的(15.2-4)(15.3-3),得到

| B' | = | n Bx ( h' / h )(1/2) | = | Bx ( ( b G m2 v / c2 ) / h )1/2 |.

| B' | = | 0.0510625 Bx |.      (1)

Solution. Substituting the above data into (15.2-4) and (15.3-3) with n = 1, one gets

| B' | = | n Bx ( h' / h )(1/2) | = | Bx ( ( b G m2 v / c2 ) / h )1/2 |.

| B' | = | 0.0510625 Bx |.      (1)

         根据(反引力磁方程), B' 推斥罗盘指针的北极,吸引指针的南极,因此指针向西偏转.根据力的合成的平行四边形法 φ = arctan ( F2 sin β / ( F1 + F2 cos β ) ),有

φ = arctan ( B' sin β / ( Bx + B' cos β ) ).      (2)

According to (反引力磁方程), B' pushed the north pole of the compass needle, and pulled the the south pole of the needle. Hence the needle deflected westwards. According to the parallelogram rule for the vector addition of forces, φ = arctan ( F2 sin β / ( F1 + F2 cos β ) ), there is

φ = arctan ( B' sin β / ( Bx + B' cos β ) ).      (2)

将(1)代入(2)可以求得理论值

φ = 0.0348343 = 1.99586°.

Substituting (1) into (2), one gets the theoretical value

φ = 0.0348343 = 1.99586°.